Points-to Analysis for the C Language 24
BPIPS v AT

Amira Mensi, amira.mensi@mines-paristech.fr MINES
PhD Advisors: Fabien Coelho, Francois Irigoin >ari<Tech
Key Issue) Dimensions) Client Analyses)
K q 4 4
\ / « Flow sensitivity « Proper memory effects
- ¢ Context sensitivity « Use-def chains
[Memory location | o
 Path sensitivity » Reaching definitions
« Determine the set of objects pointed to by a . o
 Field sensitivity Liveness variables
reference variable i
* Heap modeling « Constant propagation
+ Provide a set of points-to relations: .
« Interprocedurality » Dependences test

(pointer, memory_location, approximatioy))
State Of Art)

Analysis Framework |Idea Flow Context Efficiency Precision Field Inter
Y Sensitivity = Sensitivity Y Sensitivity = procedurality
Andersen Gce Transfgrms pqmter assignment into constraints and solves them _ " _ _ +
to obtain a points-to graph
Steensgaard LLVM Uses type inference system to generate a shape storage graph - - ++ -= - +
Wilson SUIF Uses partial transfer function to compute points-to relations + + - + - ++
Emami McCat Applies a specific rule for each pointer assignment pattern to " -+ _ S -+ S

compute Possible/Definitely points-to relations

Goal: Define and implement a general-purpose “points-to” analysis for C based on Emami’s points-to analysis

and Wilson’s scheme at source level in PIPS framework

i Ongoing Work:
r Appr h -
Our Approac) Our Contributions) Interprocedural Analysis)
[(At each call site
1. Computes.points-tt? relations (p, i, EXAC'I:) 1. Constant memor}/ accesses are used instead 1. Combination of bottom-up and top-down
for any pointer assignment such as p = &i or of temporary variables analyses
p->q->r = &j 2. All C instructions and operators are handled

; s 2. Aliasing of formal parameters is checked

2. Transforms pointer dereferencing *p into 3. Memory locations are modelized as a lattice . .
array notation p[0] 3. Binding B between effective and formal

3. Evaluat d [0] usi 4. Errors are detected: uninitialized pointers, parameters is computed

. Evaluates pseudo-array access p using dangling pointers, memory leaks...) _
points-to relations to i gling p ! i 4. Translation of the OUT points-to set for the

. . . 5. Context information is taken into account callee using B to obtain the Gen set at C
4. Updates points-to relations at each pointer when modeling heap locations

value modification 5. Translation of the callee’s written pointers to
/) obtain the Kill set of C)

An Example) Its Final Points-to Graph)

44

J

ﬂld initialize(int cnt)
{ struct array_2D {

int di;
int d2;
int *array;

}’
int *b, *c, *d, bb[cnt], cc[cnt], dd[cnt], i = 0;

struct array_2D *a = (struct array_2D*) malloc(sizeof(struct array_2D)) ;
a->array = (int *) malloc(cnt * sizeof(int));
b = &bb[0]; Il Points-to relations at .
¢ = &cc[0]; (*HEAP*_|_15.array , *HEAP*_I_16[0] , EXACT)
d = &dd[@];) (a, *HEAP*_|_15, EXACT)
for (i = 0;.1 < cnt; i++))] (b, bb[0] , EXACT)
a->array[i] = d[i] + c[i] * d[i]; (c, cc[0] , EXACT) . P
*heap*_|_

(d, dd[0] , EXACT) /

