
++

−

−

−

Field
Sensitivity

+++

++

+

+

Inter
proceduralityAnalysis Framework Idea Flow

Sensitivity
Context

Sensitivity
Efficiency Precision

Andersen GCC Transforms pointer assignment into constraints and solves them
to obtain a points-to graph

− − + −

Steensgaard LLVM Uses type inference system to generate a shape storage graph − − ++ − −

Wilson SUIF Uses partial transfer function to compute points-to relations + + − +

Emami McCat Applies a specific rule for each pointer assignment pattern to
compute Possible/Definitely points-to relations + ++ − +++

• Proper memory effects

• Use-def chains

• Reaching definitions

• Liveness variables

• Constant propagation

• Dependences test

• …

Client AnalysesClient AnalysesDimensionsDimensions

Goal: Define and implement a general-purpose Goal: Define and implement a general-purpose ““points-topoints-to”” analysis for C based on analysis for C based on EmamiEmami’’s s points-to analysis points-to analysis
and Wilsonand Wilson’’s scheme at source level in PIPS frameworks scheme at source level in PIPS framework

 Ongoing Work: Ongoing Work:
 Interprocedural Analysis Interprocedural Analysis

1. Computes points-to relations (p, i, EXACT)
for any pointer assignment such as p = &i or
p->q->r = &j

2. Transforms pointer dereferencing *p into
array notation p[0]

3. Evaluates pseudo-array access p[0] using
points-to relations to i

4. Updates points-to relations at each pointer
value modification

 Our Approach Our Approach

An Example An Example

At each call site C

1. Combination of bottom-up and top-down
analyses

2. Aliasing of formal parameters is checked

3. Binding B between effective and formal
parameters is computed

4. Translation of the OUT points-to set for the
callee using B to obtain the Gen set at C

5. Translation of the callee’s written pointers to
obtain the Kill set of C

Points-to Analysis for t he C Language

Amira Mensi, amira.mensi@mines-paristech.fr
PhD Advisors: Fabien Coelho, François Irigoin

Key IssueKey Issue

• Flow sensitivity

• Context sensitivity

• Path sensitivity

• Field sensitivity

• Heap modeling

• Interprocedurality

State Of ArtState Of Art

Its Final Points-to GraphIts Final Points-to Graph

Our ContributionsOur Contributions

1. Constant memory accesses are used instead
of temporary variables

2. All C instructions and operators are handled

3. Memory locations are modelized as a lattice

4. Errors are detected: uninitialized pointers,
dangling pointers, memory leaks…

5. Context information is taken into account
when modeling heap locations

Memory location

p q

• Determine the set of objects pointed to by a

 reference variable

• Provide a set of points-to relations:

(pointer, memory_location, approximation)

void initialize(int cnt)
{ struct array_2D {
 int d1;
 int d2;
 int *array;
 };
int *b, *c, *d, bb[cnt], cc[cnt], dd[cnt], i = 0 ;
struct array_2D *a = (struct array_2D*) malloc(sizeof(struct array_2D)) ;
a->array = (int *) malloc(cnt * sizeof(int));
b = &bb[0];
c = &cc[0];
d = &dd[0];
for (i = 0; i < cnt; i++)
 a->array[i] = d[i] + c[i] * d[i];
}

// Points-to relations at
(*HEAP*_l_15.array , *HEAP*_l_16[0] , EXACT)
(a, *HEAP*_l_15 , EXACT)
(b, bb[0] , EXACT)
(c, cc[0] , EXACT)
(d, dd[0] , EXACT)

a

*heap*_l_15

b

*heap*_l_16

c d

ddccbb
a->array

1

1

1

