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1 Introduction

The scmp architecture is a cea proprietary mp-soc architecture, which provides a dedicated
environment for the execution of multiple tasks applications under the control of a specific
task. Inter-tasks communications are performed through buffers allocated on a shared
memory available through a specific api, and explicit synchronizations are also available.
This report describes how we automatically transform streaming applications written in
traditional C code into applications dedicated to this architecture and its simulator, Sesam.

We do not address the problem of identifying tasks, but we focus on the generation of
code from an application in which task kernels are already identified by pragmas1.

Our ambition of being able to handle any control flow, combined with the characteristics
of the targeted architecture hal, leads us to propose a client-server model to maintain data
consistency. In this model, there is one server task (STs) for each bufferized datum. Kernel
tasks communicate with them either to update the shared data values on the servers , or
to retrieve them from the servers. This is examplified in Figure 1 where T0, . . . , T4 are
original kernel tasks specified by the user. Sa, Sb, Sc are server tasks for arrays a, b and
c. They communicate with each other through buffers modelled by rectangles. Tasks Tα
and Tω are additional start and end tasks required for synchronization purposes; these
synchronizations are modelled by the green edges. The control task first lauches Task Tα
and waits for its termination before lauching Tasks T0 to T4 as well as Ta, Tb and Tc.
The synchronization between these tasks is ensured by the fact that they all execute the
same code, only specialized by values describing how each task uses shared buffers. This
is further described in Section 2. The control task waits for the termination of these tasks
before lauching Tω, and terminates at the end of the latter.

However, in an application where each datum is defined by a single task and used by only
one other task, this model generates extra communications and data copying compared to
what would be done manually, with direct communications between kernel tasks through a
single buffer. In Section 4 we explore possible optimizations to get closer to hand generated
code.

1We currently use labels because one of the pips phase our transformation relies on uses labels, but
pragmas could also be used and automatically transformed into labels.
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Figure 1: Communicating through server tasks

2 Automatic task generation

The existing variety of computer architectures and the rapid changes in this field make it
necessary for compilers to reuse existing code transformations as much as possible. This
may even lead to rely on a unique programming model target, which is then adapted
to different architectures, possibly at run-time. The advantage is that all sub-compilers
automatically benefit from improvements of the code transformations, and that adding a
new target is only a matter of implementing new pre/post-processing phases and a new
run-time.

This is the chosen approach for our scmp compiler. We rely on an existing pips phase,
isolate statement [9, 6] which for any statement, generates communications for input and
output data. The original target is a spmd computational model: the generated code is
the same for the unique host and all the nodes, but the called communication functions are
different at run-time.

However, simply using this model with kernel tasks playing the role of nodes and a
host task playing the role of the host (and then of a unique centralized data server) would
sequentialize the execution of the tasks. The idea is then to have as many data server
tasks as original data to ensure the data consistency throughout the application execution
without impeding task parallelism.

Another advantage in the specific case of the scmp architecture, is that the model
ensures that communications are performed on a one-to-one basis: for each produced buffer,
there is a unique consumer. So there is no need to worry about the number of consumers
of a buffer, even if several tasks consume the same original data: server tasks perform a
specific communication for each consumer.

As this may sound mysterious to a new-comer in pips and Par4All universe, we further
explain this from the sample study case of Figure 2 in Section 2.1. Section 2.2 then presents
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int main ( )
{

int i , t , a [ 2 0 ] , b [ 2 0 ] ;
for ( t=0; t < 100 ; t++)
{

k e r n e l t a s k s 1 :
for ( i =0; i <10; i++)

a [ i ] = i+t ;

k e r n e l t a s k s 2 :
for ( i =10; i <20; i++)

a [ i ] = 2∗ i+t ;

k e r n e l t a s k s 3 :
for ( i =10; i <20; i++)

p r i n t f ( ”a[%d ] = %d\n” , i , a [ i ] ) ;
}
return ( 0 ) ;

}

Figure 2: Sample case

the specific run-time for the scmp architecture using the Sesam simulator api.

2.1 Sample case study

This code is special becasue the input data is partially initialized by two different tasks
(kernel tasks 1 and kernel tasks 2), and is entirely used by a unique task (kernel tasks 3).

Our scmp compiler first applies Phase isolate statement on each task statement, to
obtain the code of Figure 3.

Notice that each task inner code now uses a local variable (prefixed by P4A ), which is
either initialized from the original program variable if the task consumes the data, using the
P4A copy to accel 1d function, or which is used to update the original program variable
if the task produces the data, using the P4A copy from accel 1d function.

The compiler next phase generates a header file (see Figure 4) to be included by all
tasks, and which gives the buffer identifiers (for instance #define P4A__a__0_id 0), and
the way each task uses them. For instance, task scmp_task_1 produces buffer P4A__a__0,
which is expressed by #define P4A__a__0_prod_p 1 if scmp_task_1 is defined.

The code of Figure 3 is then modified to use the Par4All run-time for the scmp archi-
tecture, which ensures the synchronizations for the buffers productions and consumptions.
Actually, the Sesam api uses integers to identify buffers instead of variable names. These
identifiers must then be given as arguments to the Par4All scmp api. Moreover, as the
executed code is the same for all tasks, additional arguments must be added to control
whether a particular run-time function call is really executed, or how it is executed. Sim-
ilarly, guards are added to control the execution of the original tasks codes. For instance
“if (scmp_task_1_p)” is added to guard the execution of the first task original code, to
ensure that only task scmp_task_1 executes this code. This leads to the code of figure 5.

Next, for each task, either kernel or server, the code is replicated and specialized by
adding a preprocessing directive, “#define scmp_task_1 1” in the case of Task 1, at the
very beginning. Server tasks Par4All run-time calls are also modified to use specific
versions. Figure 6 gives the generated code for Task 1 while Figure 7 gives the generated
code for the server task of array a . File scmp_buffers is the buffers description header file,
and data_flow03_event_val.h is the synchronization event header file which is produced
by Sesam control task compilation tools.
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int main ( )
{

int i , t , a [ 2 0 ] , b [ 2 0 ] ;
for ( t = 0 ; t <= 99 ; t += 1) {
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 0 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 0 , s izeof ( int )∗10 ) ;

k e r n e l t a s k 1 :
for ( i = 0 ; i <= 9 ; i += 1)

(∗ P4A a 0 ) [ i −0] = i+t ;
P4A copy from acce l 1d ( s izeof ( int ) , 20 , 10 , 0 , &a [ 0 ] , ∗P4A a 0 ) ;
P4A deal loc ( P4A a 0 ) ;

}
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 1 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 1 , s izeof ( int )∗10 ) ;

k e r n e l t a s k 2 :
for ( i = 10 ; i <= 19 ; i += 1)

(∗ P4A a 1 ) [ i −10] = 2∗ i+t ;
P4A copy from acce l 1d ( s izeof ( int ) , 20 , 10 , 10 , &a [ 0 ] , ∗P4A a 1 ) ;
P4A deal loc ( P4A a 1 ) ;

}
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 2 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 2 , s izeof ( int )∗10 ) ;
P4A copy to acce l 1d ( s izeof ( int ) , 20 , 10 , 10 , &a [ 0 ] , ∗P4A a 2 ) ;

k e r n e l t a s k 3 :
for ( i = 10 ; i <= 19 ; i += 1)

p r i n t f ( ”a[%d ] = %d\n” , i , (∗ P4A a 2 ) [ i −10 ] ) ;
P4A deal loc ( P4A a 2 ) ;

}
}
return ( 0 ) ;

}

Figure 3: Code after applying isolate statement
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#define NB BUFFERS 3
#define P4A a 0 id 0
#define P4A a 1 id 1
#define P4A a 2 id 2

#ifde f k e r n e l t a s k 1
#define k e r n e l t a s k 1 p 1
#define P4A a 0 cons p 0
#define P4A a 0 prod p 1
#define P4A a 1 cons p 0
#define P4A a 1 prod p 0
#define P4A a 2 cons p 0
#define P4A a 2 prod p 0
#else
#define k e r n e l t a s k 1 p 0
#endif

#i fde f k e r n e l t a s k 2
#define k e r n e l t a s k 2 p 1
#define P4A a 0 cons p 0
#define P4A a 0 prod p 0
#define P4A a 1 cons p 0
#define P4A a 1 prod p 1
#define P4A a 2 cons p 0
#define P4A a 2 prod p 0
#else
#define k e r n e l t a s k 2 p 0
#endif

#i fde f k e r n e l t a s k 3
#define k e r n e l t a s k 3 p 1
#define P4A a 0 cons p 0
#define P4A a 0 prod p 0
#define P4A a 1 cons p 0
#define P4A a 1 prod p 0
#define P4A a 2 cons p 1
#define P4A a 2 prod p 0
#else
#define k e r n e l t a s k 3 p 0
#endif

#i fde f P4A sesam server a
#define P4A sesam server a p 1
#define P4A a 0 cons p 1
#define P4A a 0 prod p 0
#define P4A a 1 cons p 1
#define P4A a 1 prod p 0
#define P4A a 2 cons p 0
#define P4A a 2 prod p 1
#else
#define P4A sesam server a p 0
#endif

Figure 4: Buffers description header file
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int main ( )
{

P4A scmp reset ( ) ;
int i , t , a [ 2 0 ] , b [ 2 0 ] ;
for ( t = 0 ; t <= 99 ; t += 1) {
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 0 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 0 , s izeof ( int )∗10 ,

P4A a 0 id ,
P4A a 0 prod p | | P4A a 0 cons p , P4A a 0 prod p ) ;

i f ( k e r n e l t a s k 1 p )
for ( i = 0 ; i <= 9 ; i += 1)

(∗ P4A a 0 ) [ i −0] = i+t ;
P4A copy from acce l 1d ( s izeof ( int ) , 20 , 10 , 0 ,

P4A sesam server a p ? &a [ 0 ] : NULL, ∗P4A a 0 ,
P4A a 0 id , P4A a 0 prod p | | P4A a 0 cons p ) ;

P4A deal loc ( P4A a 0 , P4A a 0 id ,
P4A a 0 prod p | | P4A a 0 cons p , P4A a 0 prod p ) ;

}
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 1 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 1 , s izeof ( int )∗10 ,

P4A a 1 id ,
P4A a 1 prod p | | P4A a 1 cons p , P4A a 1 prod p ) ;

i f ( k e r n e l t a s k 2 p )
for ( i = 10 ; i <= 19 ; i += 1)

(∗ P4A a 1 ) [ i −10] = 2∗ i+t ;
P4A copy from acce l 1d ( s izeof ( int ) , 20 , 10 , 10 ,

P4A sesam server a p ? &a [ 0 ] : NULL, ∗P4A a 1 ,
P4A a 1 id , P4A a 1 prod p | | P4A a 1 cons p ) ;

P4A deal loc ( P4A a 1 , P4A a 1 id ,
P4A a 1 prod p | | P4A a 1 cons p , P4A a 1 prod p ) ;

}
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 2 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 2 , s izeof ( int )∗10 ,

P4A a 2 id ,
P4A a 2 prod p | | P4A a 2 cons p , P4A a 2 prod p ) ;

P4A copy to acce l 1d ( s izeof ( int ) , 20 , 10 , 10 ,
P4A sesam server a p ? &a [ 0 ] : NULL, ∗P4A a 2 ,
P4A a 2 id , P4A a 2 prod p | | P4A a 2 cons p ) ;

i f ( k e r n e l t a s k 3 p )
for ( i = 10 ; i <= 19 ; i += 1)

s e s am pr in t f ( ”a[%d ] = %d\n” , i , (∗ P4A a 2 ) [ i −10 ] ) ;
P4A deal loc ( P4A a 2 , P4A a 2 id ,

P4A a 2 prod p | | P4A a 2 cons p , P4A a 2 prod p ) ;
}

}
return ( 0 ) ;

}

Figure 5: Code after transformation to use the Par4All scmp run-time
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#define k e r n e l t a s k 1 1
#include <sesam com . h>
#include ”p4a scmp . h”
#include ” scmp buf f e r s . h”
#include ” da ta f l ow03 even t va l . h”

int main ( )
{

P4A scmp reset ( ) ;
int i , t , a [ 2 0 ] , b [ 2 0 ] ;
for ( t = 0 ; t <= 99 ; t += 1) {
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 0 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 0 , s izeof ( int )∗10 ,

P4A a 0 id ,
P4A a 0 prod p | | P4A a 0 cons p , P4A a 0 prod p ) ;

i f ( k e r n e l t a s k 1 p )
for ( i = 0 ; i <= 9 ; i += 1)

(∗ P4A a 0 ) [ i −0] = i+t ;
P4A copy from acce l 1d ( s izeof ( int ) , 20 , 10 , 0 ,

P4A sesam server a p ? &a [ 0 ] : NULL, ∗P4A a 0 ,
P4A a 0 id , P4A a 0 prod p | | P4A a 0 cons p ) ;

P4A deal loc ( P4A a 0 , P4A a 0 id ,
P4A a 0 prod p | | P4A a 0 cons p , P4A a 0 prod p ) ;

}
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 1 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 1 , s izeof ( int )∗10 ,

P4A a 1 id ,
P4A a 1 prod p | | P4A a 1 cons p , P4A a 1 prod p ) ;

i f ( k e r n e l t a s k 2 p )
for ( i = 10 ; i <= 19 ; i += 1)

(∗ P4A a 1 ) [ i −10] = 2∗ i+t ;
P4A copy from acce l 1d ( s izeof ( int ) , 20 , 10 , 10 ,

P4A sesam server a p ? &a [ 0 ] : NULL, ∗P4A a 1 ,
P4A a 1 id , P4A a 1 prod p | | P4A a 1 cons p ) ;

P4A deal loc ( P4A a 1 , P4A a 1 id ,
P4A a 1 prod p | | P4A a 1 cons p , P4A a 1 prod p ) ;

}
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 2 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 2 , s izeof ( int )∗10 ,

P4A a 2 id ,
P4A a 2 prod p | | P4A a 2 cons p , P4A a 2 prod p ) ;

P4A copy to acce l 1d ( s izeof ( int ) , 20 , 10 , 10 ,
P4A sesam server a p ? &a [ 0 ] : NULL, ∗P4A a 2 ,
P4A a 2 id , P4A a 2 prod p | | P4A a 2 cons p ) ;

i f ( k e r n e l t a s k 3 p )
for ( i = 10 ; i <= 19 ; i += 1)

s e s am pr in t f ( ”a[%d ] = %d\n” , i , (∗ P4A a 2 ) [ i −10 ] ) ;
P4A deal loc ( P4A a 2 , P4A a 2 id ,

P4A a 2 prod p | | P4A a 2 cons p , P4A a 2 prod p ) ;
}

}
return ( ev T001 ) ;

}

Figure 6: Final code for kernel Task 1
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#define P4A sesam server a 1
#include <sesam com . h>
#include ”p4a scmp . h”
#include ” scmp buf f e r s . h”
#include ” da ta f l ow03 even t va l . h”

int main ( )
{

P4A scmp reset ( ) ;
int i , t , a [ 2 0 ] , b [ 2 0 ] ;
for ( t = 0 ; t <= 99 ; t += 1) {
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 0 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 0 , s izeof ( int )∗10 ,

P4A a 0 id ,
P4A a 0 prod p | | P4A a 0 cons p , P4A a 0 prod p ) ;

i f ( k e r n e l t a s k 1 p )
for ( i = 0 ; i <= 9 ; i += 1)

(∗ P4A a 0 ) [ i −0] = i+t ;
P4A copy from acce l 1d ( s izeof ( int ) , 20 , 10 , 0 ,

P4A sesam server a p ? &a [ 0 ] : NULL, ∗P4A a 0 ,
P4A a 0 id , P4A a 0 prod p | | P4A a 0 cons p ) ;

P4A deal loc ( P4A a 0 , P4A a 0 id ,
P4A a 0 prod p | | P4A a 0 cons p , P4A a 0 prod p ) ;

}
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 1 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 1 , s izeof ( int )∗10 ,

P4A a 1 id ,
P4A a 1 prod p | | P4A a 1 cons p , P4A a 1 prod p ) ;

i f ( k e r n e l t a s k 2 p )
for ( i = 10 ; i <= 19 ; i += 1)

(∗ P4A a 1 ) [ i −10] = 2∗ i+t ;
P4A copy from acce l 1d ( s izeof ( int ) , 20 , 10 , 10 ,

P4A sesam server a p ? &a [ 0 ] : NULL, ∗P4A a 1 ,
P4A a 1 id , P4A a 1 prod p | | P4A a 1 cons p ) ;

P4A deal loc ( P4A a 1 , P4A a 1 id ,
P4A a 1 prod p | | P4A a 1 cons p , P4A a 1 prod p ) ;

}
{

//PIPS genera ted v a r i a b l e
int (∗ P4A a 2 ) [ 1 0 ] = ( int ( ∗ ) [ 1 0 ] ) 0 ;
P4A malloc ( ( void ∗∗) &P4A a 2 , s izeof ( int )∗10 ,

P4A a 2 id ,
P4A a 2 prod p | | P4A a 2 cons p , P4A a 2 prod p ) ;

P4A copy to acce l 1d ( s izeof ( int ) , 20 , 10 , 10 ,
P4A sesam server a p ? &a [ 0 ] : NULL, ∗P4A a 2 ,
P4A a 2 id , P4A a 2 prod p | | P4A a 2 cons p ) ;

i f ( k e r n e l t a s k 3 p )
for ( i = 10 ; i <= 19 ; i += 1)

s e s am pr in t f ( ”a[%d ] = %d\n” , i , (∗ P4A a 2 ) [ i −10 ] ) ;
P4A deal loc ( P4A a 2 , P4A a 2 id ,

P4A a 2 prod p | | P4A a 2 cons p , P4A a 2 prod p ) ;
}

}
return ( ev T004 ) ;

}

Figure 7: Final code for server task of array a
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#include <sesam com . h>
#include ”p4a scmp . h”
#include ” da ta f l ow03 even t va l . h”

int main ( ){
return ( ev T000 ) ;

}

Figure 8: Start task

#include <sesam com . h>
#include ”p4a scmp . h”
#include ” da ta f l ow03 even t va l . h”

int main ( ){
return (END APPLI ) ;

}

Figure 9: End task

A start task and an end task are then created (see Figure 8 and 9) for synchronization
purposes, as well as a control task (Figure 10), written in a proprietary language. It mainly
describes the explicit task synchronizations, and the necessary resources, such as the stack
sizes of all tasks. Our compiler generates arbitrary stack sizes which have to be further
hand modified to meet the stack sizes actually required for each task.

All generated files are placed in a new directory placed in directory applis processing/,
which is created if it does not exists). The control task file is placed in directory applis/.
Makefile.arp file is also created in directory applis processing/ for building the whole
application.

2.2 SCMP run-time

The compilation process presented in the previous section relies on a specific version of the
Par4All run-time for the allocation/freeing of shared buffers, and the synchronizations
through these buffers of kernel and server tasks. This section describes all the run-time
functions for the scmp architecture. It’s important to keep in mind that each Par4All
run-time function call in a kernel task, corresponds to a similar call in the server task,
which is executed concurrently. As a consequence, to each wait corresponds one and only
one send.

2.2.1 Allocation

The allocation function is called each time a buffer is required, even inside surround-
ing loops. A crude implementation, systematically invoking sesam_reserve_data and
sesam_data_assignation at each call, would have led to a potentially huge overhead in
execution time compare to a manual version which would place these calls outside of the
nested loops if the allocated size is independent of loop varying variables.

Instead, an optimization is performed at run-time: a global variable2 stores the buffer
current size, and each time the allocation function is called, the needed size is checked
against the current size; a new allocation is performed only if the needed size is different from
the current size. The code for the allocation function is provided in Figure 11. The global

2There is one global variable per task process, it is not a variable allocated in the shared memory.
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NBTASK 6
NBEVENT 5
DEADLINE 1000000
NAMETASKS T000 T001 T002 T003 T004 T005
SOURCE T000 T001 T002 T003 T004 T005
SIZE STACK 1024 1024 1024 1024 1024 1024
INIT T000 ;
NEXT T000 = T001 , T002 , T003 , T004 , ev T000 ;
NEXT T001 , T002 , T003 , T004 = T005 , ev T001 , ev T002 , ev T003 , ev T004 ;
NEXT T005 = END;
LENGTH T000 , 1 = 1000 ;
LENGTH T001 , 1 = 10000;
LENGTH T002 , 1 = 10000;
LENGTH T003 , 1 = 10000;
LENGTH T004 , 1 = 10000;
LENGTH T005 , 1 = 1000 ;
ENDAPPLI;

Figure 10: Control task

array is initialized by a call to function P4A_scmp_reset() (Figure 12) at the beginning of
each task.

Notice that the allocation is performed only by the producer of the data. This is
controlled through an argument of the function (producer_p). Notice also that a blocking
wait is systematically executed if the buffer has never been allocated. It ensures that it is
ready to be written (if it doesn’t have to be re-allocated) or to be freed (if it’s allocated size
has to be changed). In the case where the allocated size has to be changed, a blocking wait
is issued just after the allocation, to ensure that the data is ready before being written. In
all cases, the buffer is ready to be written on exit of the function.

Function sesam_map_data is called whenever the task produces or consumes the buffer
(do_it is true): it return value is a pointer towards the shared buffer, which can be handled
as a usual variable. The current maximum of eight simultaneously mapped data per task is
checked neither at compile time nor at run time. So the task specifier has to check before
hand that each kernel task does not use more than eight input/output array data.

Lastly, the code is identical for server and kernel tasks. Different versions may be
required to handle tasks which produce and consume the same original data or for which
the input data set cannot be accurately represented (see Section 4).

2.2.2 Deallocation

The deallocation function (Figure 13) is called after the execution of the core of the task.
On the consumer side, it warns the producer, that the buffer is now available for write
usage. On both sides, the sesam_unmap_data function is called to release a mapped buffer
slot.

Notice that this function does not free the shared buffer because we do not know at
this time if it will be re-used in next iterations. As a consequence, a buffer for a task which
does not belong to a loop nest, or a buffer used in the last iteration of a loop nest, is never
freed. This may be annoying in the case of successive loop nests re-using the same original
data for instance.

2.2.3 Copying to a kernel task from a server task

Once the buffer has been allocated and is ready for writing, using it for a server to kernel
communication is really simple. Figures 14 and 15 respectively give the functions used on
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s i z e t c u r r e n t b u f f e r s i z e [NB BUFFERS ] ;

void P4A scmp malloc (void ∗∗ dest , s i z e t n ,
unsigned int de s t i d , int do i t , int producer p )

{
i f ( d o i t )
{

i f ( producer p )
{

s i z e t c u r r e n t s i z e = c u r r e n t b u f f e r s i z e [ d e s t i d ] ;
i f ( c u r r e n t s i z e != 0)
{

P4A sesam wai t a l l pages ( de s t i d , c u r r e n t s i z e , O WRITE) ;
}
i f ( c u r r e n t s i z e !=0 && cu r r e n t s i z e != n)
{

s e s am f r e e da ta ( d e s t i d ) ;
c u r r e n t s i z e = 0 ;

}
i f ( c u r r e n t s i z e == 0)
{

s i z e t i ;
s e sam re se rve data (n/ s e s am ge t pag e s i z e ( )+1) ;
s e s am data a s s i gna t i on ( de s t i d , n/ s e s am ge t pag e s i z e ()+1 , 1 ) ;
P4A sesam wai t a l l pages ( de s t i d , n , O WRITE) ;

}
}
c u r r e n t b u f f e r s i z e [ d e s t i d ] = n ;
∗ dest = sesam map data ( d e s t i d ) ;

}
}

Figure 11: Par4All scmp run-time: allocation function

void P4A scmp reset ( )
{

int i ;
for ( i = 0 ; i <NB BUFFERS; i ++)
{

c u r r e n t b u f f e r s i z e [ i ] = 0 ;
}

}

Figure 12: Par4All scmp run-time: reset function
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void P4A scmp deal loc (void ∗dest ,
unsigned int de s t i d , int do i t , int producer p )

{
i f ( d o i t )
{

i f ( ! producer p )
{

s i z e t c u r r e n t s i z e = c u r r e n t b u f f e r s i z e [ d e s t i d ] ;
P4A sesam send a l l pages ( de s t i d , c u r r e n t s i z e , O WRITE) ;

}
sesam unmap data ( des t ) ;

}
}

Figure 13: Par4All scmp run-time: deallocation function

void P4A copy to acce l 1d ( s i z e t e l ement s i z e ,
s i z e t d1 s i z e ,
s i z e t d1 b l o ck s i z e ,
s i z e t d 1 o f f s e t ,
const void ∗ host addres s ,
void ∗ ac c e l add r e s s ,
unsigned int a c c e l a dd r e s s i d ,
int do i t )

{
i f ( d o i t )
{

P4A sesam wai t a l l pages ( a c c e l a dd r e s s i d , e l emen t s i z e ∗ d1 b l o ck s i z e ,
O READ) ;

}
}

Figure 14: Par4All scmp run-time: Copying to a kernel task from a server task (kernel
task version)

the kernel task and server task sides for one-dimensional arrays3. The server tasks copies
its data in the buffer, and then releases the latter for read access; concurrently, the kernel
task waits for the buffer to be ready for read access.

The kernel task version does not use its accel_address argument, which corresponds
to the address of the original variable, leaving way for further elimination of the variable
declaration if the function were inlined.

2.2.4 Copying from a kernel task to a server task

Figures 16 and 17 respectively give the functions used on the kernel task and server task
sides for a communication from the kernel task to the server task. The kernel task releases
the buffer for read access, while the server task waits for this release before copying back
the buffer content into its own data.

2.2.5 Miscellaneous functions

Up to now, waits and sends have been performed through calls to P4A_sesam_wait_all_pages
and P4A_sesam_send_all_pages. However, the Sesam hal divides shared buffers in pages

3Functions for two-dimensional arrays have also been implemented, and the run-time could easily be
extended to cope with arrays of more dimensions.
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void P4A copy to acc e l 1d s e rve r ( s i z e t e l ement s i z e ,
s i z e t d1 s i z e ,
s i z e t d1 b l o ck s i z e ,
s i z e t d 1 o f f s e t ,
const void ∗ host addres s ,
void ∗ ac c e l add r e s s ,
unsigned int a c c e l a dd r e s s i d ,
int do i t )

{
s i z e t i ;
i f ( d o i t )
{

char ∗ cdes t = a c c e l a dd r e s s ;
const char ∗ c s r c = d 1 o f f s e t ∗ e l emen t s i z e + (char ∗) ho s t addre s s ;
for ( i = 0 ; i < d1 b l o c k s i z e ∗ e l emen t s i z e ; i++)

cdes t [ i ] = c s r c [ i ] ;
P4A sesam send a l l pages ( a c c e l a dd r e s s i d , d 1 b l o c k s i z e ∗ e l ement s i z e ,

O READ) ;
}

}

Figure 15: Par4All scmp run-time: Copying to a kernel task from a server task (server
task version)

void P4A copy from acce l 1d ( s i z e t e l ement s i z e ,
s i z e t d1 s i z e ,
s i z e t d1 b l o ck s i z e ,
s i z e t d 1 o f f s e t ,
void ∗ host addres s ,
const void ∗ ac c e l add r e s s ,
unsigned int a c c e l a dd r e s s i d ,
int do i t )

{
i f ( d o i t )
{

P4A sesam send a l l pages ( a c c e l a dd r e s s i d , e l emen t s i z e ∗ d1 b l o ck s i z e ,
O READ) ;

}
}

Figure 16: Par4All scmp run-time: Copying from a kernel task to a server task (kernel
task version)
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void P4A copy f rom acce l 1d se rve r ( s i z e t e l ement s i z e ,
s i z e t d1 s i z e ,
s i z e t d1 b l o ck s i z e ,
s i z e t d 1 o f f s e t ,
void ∗ host addres s ,
const void ∗ ac c e l add r e s s ,
unsigned int a c c e l a dd r e s s i d ,
int do i t )

{
int i ;
i f ( d o i t )
{

P4A sesam wai t a l l pages ( a c c e l a dd r e s s i d , d 1 b l o c k s i z e ∗ e l ement s i z e ,
O READ) ;

char ∗ cdes t = d 1 o f f s e t ∗ e l emen t s i z e + (char ∗) ho s t addre s s ;
const char ∗ c s r c = ac c e l a dd r e s s ;
for ( i = 0 ; i < d1 b l o c k s i z e ∗ e l emen t s i z e ; i++)

cdes t [ i ] = c s r c [ i ] ;
}

}

Figure 17: Par4All scmp run-time: Copying from a kernel task to a server task (server
task version)

stat ic void P4A sesam wai t a l l pages (unsigned int id , int s i z e , int RW)
{

int i ;
for ( i = 0 ; i < s i z e / s e s am ge t pag e s i z e ( ) + 1 ; i++)

sesam wait page ( id , i , RW, 0 ) ;
}

stat ic void P4A sesam send a l l pages (unsigned int id , int s i z e , int RW)
{

int i ;
for ( i = 0 ; i < s i z e / s e s am ge t pag e s i z e ()+1; i++)

sesam send page ( id , i , RW) ;
}

Figure 18: Par4All scmp run-time: waiting and sending functions

of fixed size, and provides primitives to handle one page at a time. However, in our pro-
gramming model, we always communicate the whole content of a buffer. This is why our
run-time relies on the two previously mentioned functions (Figure 18), which, given the size
of a buffer, respectively send or wait for all the pages of a buffer.

3 A real case study: Thales Sensing Application

The application developed by thales for the scalopes project is “a sensing application
that aims at detecting gsm signals within a wide band acquisition”[5]. Each iteration of
the main loop goes through the following steps:

• Input: extraction of the buffered signal from the input file;

• Computation Step 1: transposition and wide band filtering;

• Computation Step 2: transposition and narrow band filtering;
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• Computation Step 3: psd computation (fft)

• Output: write the results in an output file.

Computation Step 2 is itself composed of several transposition and filtering tasks embedded
in two partially nested loops. Throughout the application, data flows from one (sub-)step
to the next one. Each (sub-)step uses different data as input and output, making the
application an ideal candidate for the scmp architecture, provided that tasks are sufficiently
well-balanced.

Some modifications were required to fit the Sesam simulator and Par4All require-
ments. They are described in Section 3.1. Next, we describe the compilation output and
some post-processing necessary to limit the memory footprint of the application. Then, we
present some performance results.

3.1 Modification of the original application

First of all, we specialized the application to keep only the low sensitivity quarter band
part, to meet the requirements of the scalopes project. We also removed arguments passed
to the main program, and we removed all system calls, to timing functions for instance,
because they are not currently supported by the Sesam hal.

The Sesam api does not provide any dynamic allocation functions, apart from the
allocation of shared buffers. On the other hand, Par4All code generation for hybrid
machines does not cope well with pointers [8]. The first modification was then to replace
dynamically allocated arrays into stack allocated arrays, which was quite easy in this case.
As a consequence, all allocating error testing code was removed.

One difficult part was to deal with the fact that the Sesam api does not currently
support IOs, apart from the printing data to the standard output. A partial input data
set and coefficient data sets were provided by the cea in the form of header files declaring
global arrays. The extraction of the input data and the reading of the coefficient files had
to be modified to import their data from the global arrays. At the same time, we outlined
these tasks into specific functions to ease their declarations as tasks.

Currently, our scmp compiler only support tasks declared in the main() function. At
first, we inlined the sole function called in main(), processingLowSensitivity(), at its
call site and added labels to identify the different tasks. The resulting application is called
Version 1. We did the same with processingStep2LowSensitivity() after testing Ver-
sion 1, to check whether a finer task grain would be beneficial. The resulting application is
called Version 2.

3.2 Compilation and Postprocessing

Our Par4All scmp compiler automatically generates all the tasks codes, including the con-
trol task description), places them in the right directorie, and also generates the Makefile.arp
file to build the resulting application for the Sesam simulator. Some post-processing is per-
formed semi-automatically by a python script to replace array declarations by one-element
arrays in tasks where they are not needed. This could be done by a dead code elimination
phase such as the one provided by pips, but we did not have time to test it.

For Version 1, 19 tasks are generated, including the start and end tasks, and 9 server
tasks.

For Version 2, 31 tasks are generated, including the start and end tasks, and 12 server
tasks.
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3.3 Performance results

The performance results presented here are provided by Nicolas Ventroux from cea.
A sequential version has been built by the cea to serve as a reference, and ran on one

processor on the simulator. All the concurrent versions have been run on 4 processors.
The cea manually generated concurrent version runs 2.35 faster than the seuquential

version.
Our Version 1 runs 1.20 faster. It is disavantaged by the fact that only one task is in

charge of Computation Step 2, which constitutes a performance bottle neck.
Version 2, in which Computation Step 2 is splitted into several smaller tasks, runs 1.86

times faster, getting closer to the manually generated application despite the server tasks
overhead. These encouraging results may be partly explained by the fact that a communi-
cation between two kernel tasks through a server task involves two shared buffers and the
stack allocated copy of the original array on the server task. This almost amounts to using
three buffers, except that we have to copy the buffered data to/from the stack allocated
array. We have actually observed that the input data reading task is three iterations ahead
of Computation Step 1 task. On the other hand, the manually generated application uses
a double-buffering scheme for inter-task communications.

However, the run-time and memory footprint overheads both leave ways to further
optimizations.

4 Optimizations and Enhancements

Along this report, we suggested several possible optimizations. They are discussed below,
as well as new ones:

1. To reduce the memory footprint of each task, dead code elimination, including unused
data declarations removal, would be necessary after inlining Par4All functions.

2. Server tasks could be avoided, in particular in case of a pure streaming application
in which entire arrays smoothly flow from a unique task to another. This case is easy
to detect: each buffered array has a unique producer, and a unique consumer. The
server task could then be declared as being the producer kernel task, and a special
set of functions used instead of those provided in Section 2.2.

However, it would still be necessary to copy the content of the temporary variables
generated by isolate_statement into the original variable (for instance a0 into a).
This copy could be removed if the temporary variables have the same layout compared
to the original variable in the producer and the consumer. But double buffers may
be necessary to keep sufficient parallelism between tasks.

These optimizations require that a task graph is available, whose edges are annotated
with array regions corresponding to inter-task communications.

3. Allocations and communications should also be performed as soon as possible, as done
in Par4All for the optimization of communications for gpu [7]. For instance, if the
allocated size is loop independent, the call to the allocation function could be moved
outside. And if all iterations of a loop import values initialized prior to the loop, the
communications can be moved outside the loop. This is the case in Thales application
for the three coefficient arrays, which are all initialized before the main loop, and for
which we generate communications inside the loop whenever a task requires them.

4. Current run-time does not support tasks which are at the same time producer and
consumer of a given data. This case may arise in the original code, but also because
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isolate_statement safely generates extra copies from the server to the kernel when
the input data set cannot be accurately represented.

5. Tuning the stack sizes must currently be done manually, by running the application,
and correcting them either by giving higher values in case of failures, or by lowering
the values from the results of the simulation. Statically over-estimating stack usage
would be a great help here. It’s an untractable issue in the general case, but current
limitations on programs handled by Sesam may render the problem solvable [1, 4, 3, 2].

5 Conclusion

In this technical report, we have presented our compilation process for the scmp architec-
ture, from C applications in which tasks are already identified. The performance results for
a real sensing application from thales have shown the relevance of the chosen approach.
Further optimizations are proposed to lessen the performance gap between automatically
and manually generated codes.
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